Synpse
π€ Devices
β‘ Applications
Try Synpse!
Searchβ¦
Intro to Synpse
Start here
Quick Start (web user)
Quick Start (CLI)
Agent
Install
Uninstall
CLI
Install & Usage
synpse core
Devices
Applications
Deploy
Secrets
Environment variables
Substitution (dynamic templates)
Volumes
Networking
Scheduling
Registry authentication
Using GPUs
Tips & Tricks
Logs and status
Application specification (API reference)
Account
Manage
Projects
Namespaces
Quotas
Examples
π
Home Automation
π
Preparing OS Images
π‘
Dynamic Templates
β
Public Cloud IoT
π
Device management
On-prem Deployment
Resources
Security & Tech
Powered By
GitBook
Using GPUs
Using device GPUs from your applications
Synpse supports NVIDIA GPUs. It's relying on the standard
NVIDIA Container Toolkit
.
Installation instructions can be found here:
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
. Check our examples section on running workloads with enabled GPUs for your ML/crypto workloads.
Exposing device GPUs to your applications is as simple as:
name
:
jupyter
-
gpu
scheduling
:
type
:
Conditional
selectors
:
type
:
"gpu"
spec
:
containers
:
-
name
:
jupyter
image
:
cschranz/gpu
-
jupyter
:
v1.4_cuda
-
11.0_ubuntu
-
20.04_python
-
only
gpus
:
all
user
:
root
env
:
-
name
:
JUPYTER_TOKEN
value
:
jupyter123
-
name
:
GRANT_SUDO
value
:
yes
-
name
:
JUPYTER_ENABLE_LAB
value
:
yes
β
Previous
Registry authentication
Next
Tips & Tricks
Last modified
6mo ago
Copy link